Recognition and Treatment of Neurofibromatosis Type 1

Laura Klesse MD, PhD
Assistant Professor of Pediatrics
Director of the Comprehensive NF Clinic, Dallas
Dedman Family Scholar in Clinical Care
October 19, 2012

The Neurofibromatoses

- Genetic neuro-cutaneous disorders which predispose to both benign and malignant tumors.
- Three distinct types:
  - Neurofibromatosis Type 1
  - Neurofibromatosis Type 2
  - Schwannomatosis
- Arise from different genes – lead to different clinical phenotypes.
- No clearly effective medical therapy for any of these three.

Schwannomatosis

- Schwannomatosis:
  - Rare – 1 in 40,000. Only recently recognized and often considered along with NF2.
  - Genetics are not as clear as NF 1 or NF 2.
    - Most cases have no family history.
    - Gene recently identified – SMARCB1 (INI1) (found in only a subset of patients)
  - Characterized by: multiple schwannomas (not of the VIII-nerve) on cranial, peripheral or spinal nerves.
  - Segmental findings in 1/3 of patients
  - No other associated tumors or learning disabilities.
  - Major difficulty is chronic pain.

Neurofibromatosis Type 2

- Rare - affects 1 in 25,000 individuals.
- Autosomal Dominant, gene located on Ch 22.
- Characterized by:
  - Bilateral acoustic neuromas. Susicion should be raised in a unilateral acoustic prior to age 30.
  - Can also develop schwannomas on other nerves.
  - Also at risk of Meningiomas, ependymomas
  - Juvenile cortical cataracts
  - Family history
- Often diagnosed in late teens/early adulthood – hearing loss, balance issues or tinnitus in late teens or early twenties can be the first symptom.
- Most patients with NF2 lose their hearing by adulthood.
- Most undergo multiple surgical procedures during their life.
- Avastin is currently being studied in patients with NF2, early trials demonstrated tumor response and/or hearing improvement.

Neurofibromatosis Type 1

- First described in 1882 by German pathologist Friedrich Daniel von Recklinghausen
- Very common:
  - 1 in 2500 individuals.
  - Affects more than 100,000 Americans and 7000 Texans.
- Worldwide distribution: equally affects males and females; no racial, ethnic or geographic distribution.
- Autosomal dominant disorder:
  - 50% of cases are new (sporadic) mutations.
  - Variable presentation (penetrance) even within families.
  - 60% of patients will have a mild presentation and course.
  - 20% have a very serious course.
NF Genetics

- Mutation in the NF-1 gene on Chromosome 17.
- Is a mutation in a tumor suppressor gene.
- Requires the loss of the second gene at the cell level for tumor formation.
- No clear correlation between the mutation and the clinical course.
- NF-1 is a negative regulator of growth and survival signaling pathways within a cell.

Identification of NF1 Matters

- Most common cancer predisposition syndrome.
- Places patients at risk for a variety of tumors, benign and malignant.
  - Big risk of optic gliomas is in children less than 8.
  - Malignant peripheral nerve sheath tumor risk is in the early 20s.
- There are consensus guidelines for screening for tumors as well as other associated complications.
- Therapy decisions are influenced by the presence of NF1.
  - Need for treatment as well as the type!

Diagnostic Criteria for Neurofibromatosis Type 1

- Six or more café au lait macules greater than 5 mm in prepubertal and greater than 15 mm in postpubertal patients
- Two or more cutaneous neurofibromas of any type or
- One or more plexiform neurofibromas
- Freckling in the axillary or inguinal region
- Optic glioma
- Two or more Lisch nodules
- Ossseous lesion such as sphenoid wing dysplasia (orbital wall) or thinning of long bone cortex, pseudoarthrosis
- First degree relative with NF1

Skin Findings in NF

- Café au lait macules:
  - aggregations of melanocytes.
  - Often present at birth, increase in size and number until puberty.
  - 80% of patients with NF1 have 6 or more by 1 year of age.
  - Patients with 6 or more CALMs and no other criteria should be treated as if NF1 – as 95% will go on to meet NF1 criteria.
  - Present in close to 90% of patients with NF1.
  - Often will darken and increase in size as patients age.
  - In general – not associated with tumor growth.
  - Skin fold freckling:
    - Typically develops by age 5.
    - Present in 75% of patients with NF1.

Ocular Manifestations

- Lisch Nodules
  - Iris Hamartomas
  - Benign - do not impact vision.
  - Initially light colored, darken with age
  - Seen in 50% of 5-6 year olds, >90% of adults.
  - May not be seen prior to age 4.
  - Visible with slit-lamp examination.

Bone abnormalities

- Scoliosis:
  - seen in up to 30% of patients, incidence increases with age.
  - Most often is mild.
- Congenital bone defects:
  - Absence of orbital wall (sphenoid wing)
  - Bowing of tibia/fibula.
  - Pseudoarthrosis
  - Scalloping of vertebral bodies.
  - Bone thinning – esp in spine and pelvis.
  - Bony overgrowth
  - Bone cysts
Benign Neurofibromas

- Cutaneous and subcutaneous neurofibromas are present in 95% of adults with NF1.
- Can appear at any age, but numbers and size usually increase with puberty and pregnancy.
- Are proliferations of Schwann cells, endothelial cells and fibroblasts at a nerve root.
- Are benign but can be disfiguring.
- Can have pain, itching.
- Do not appear to carry a risk of malignant transformation.

Plexiform Neurofibromas

- Growth can occur throughout childhood, but often have long periods of stability.
- Surgical resection is still the standard therapy.
  - Often necessary when the neurofibroma is impinging on airway, etc.
  - Complete resection is often difficult without major complications.
  - 44% grow back if sub-totally resected – particularly in young children.
  - Often have major sequelae.
  - Chemotherapy is not effective.
  - Radiation therapy not effective.
  - Associated with a clearly increased risk of secondary malignancy.

Medical Treatments for Plexiform Neurofibromas

- New therapies aimed at blocking the signaling cascades involved and/or interaction of the microenvironment.
  - Increased MAPK and mTOR signaling in plexiform neurofibromas as a result of loss of NF1.
  - Growth signals from the microenvironment – haplo-insufficient for NF1 are necessary.

Sirolimus (Rapamycin)

- Phase II clinical trial currently open at CTF Clinical Consortium Centers.
  - Enrolled patients older than 3 years of age.
  - Stratum 1: inoperable, progressing
  - Stratum 2: High risk
- Preliminary evidence:
  - Time to progression around 10 months.
  - Stratum 1: Closing accrual. Awaiting last imaging for results
  - Stratum 2: 13 enrolled – all removed after 6 cycles.
    - 11 without response, 1 with progression.
  - Toxicity noted.
    - Decreases in doses, 3 removed for toxicity.

Imatinib (Gleevac)

- Drug initially designed for leukemia.
- Inhibits cell surface receptors in the microenvironment which are involved in the development of plexiform neurofibromas.
- Work done in Luis Parada’s lab at UT Southwestern and Wade Clapp’s lab at IU the basis for this trial.
- 1 patient had >50% reduction in tumor size of a neck plexiform neurofibroma.
- Yang et al., 2008 Cell 135 (3)
**Imatinib – Phase II Clinical Trial**
- 36 total patients enrolled (pediatric and adult).
- Looking for changes of 5% or more.
- 24 patients evaluated.
- 38% demonstrated tumor reduction (>5%).
  - 3/3 pelvic plexiforms and 3/3 head and neck tumors responded.
- 8% stable tumors
- 54% progressive tumors
- Symptomatic improvement in 55%
- 12 patients withdrew prior to 6 months
  - Most common toxicities: weight gain, liver function tests, blood counts.

**PEG-Interferon**
- Inhibits growth.
- Inhibits blood vessels.
- Immune modulation.
- Not specific.
- In early trials with α-interferon:
  - 5/27 patients reported clinical improvement.
  - 26/27 had stable plexiforms on MRI scan.
  - Few objective clinical responses.
  - Can get rebound growth after stopping.
- Administered under the skin once per week.
- Open to patient 18 months to 21 years.
- Plexiforms increasing in size or in dangerous locations.
- Recent results show a doubling of the time to growth (progression) in PNs growing prior to starting.
  - Can go on and off – appears to still have activity.
- Currently open in Pittsburg, NCI, Chicago and Seattle.

**Malignant Peripheral Nerve Sheath Tumors**
- Plexiform neurofibromas have a significant risk of progression to malignancy – malignant peripheral nerve sheath tumors
  - 10% risk over a patient’s lifetime, 3% risk in pediatrics.
- Concerning signs: rapid growth or dull, constant pain.
  - Pain that wakes at night.
- Treated with combination chemotherapy – but outcomes are poor.

**Patients with NF1 and MPNST Fair Poorly**
- Patients with NF1 tend to do worse overall.
- Patients with NF1 tend to have larger tumors or be metastatic at presentation.
- Patients with NF1 present with MPNSTs at a younger age.
  - 20 instead of 40–50s.
- Patients with NF1 and MPNSTs have less response to chemotherapy.
  - In combined Italy/Germany experience:
    - 126 patients over 25 years
    - Response to chemotherapy was 55% without NF1; 18% in patients with NF1
    - Overall survival at 5 years was 55% vs 32%.

**FDG-PET scans can be of benefit**
- Significant difficulty in distinguishing symptomatic plexiform neurofibromas from MPNSTs on conventional MRI/CT scans.
- Biopsies can be difficult and may have sampling error.
- Early detection may benefit NF patients.
- 18F –Fluorodeoxyglucose positron emission tomography (FDG-PET) – initial studies in adults by R. Ferner.
- PET has 95% sensitivity and 87% specificity in detecting MPNSTs.

**FDG-PET scans and NF1**
- Retrospective analysis of NF1 pediatric patients.
- Underwent FDG-PET and biopsy (20 patients, 27 lesions)
  - Benign PNs – SUV of 2.49 (SD 1.5)
  - MPNSTs – SUV 7.63 (SD 2.96).
  - Proposed SUV of 4 for a cutoff with high sensitivity (100%) and specificity (94%).
- Utility in routine screening not yet clear.
  - Tsai et al, 2012 – J. NO 108(3).
Neurofibromatosis type 1

- Surgical resection usually
- 35-40% of childhood brain
- Derived from glia, the support cells of CNS
- Overall survival very good - >90% at 5 years
- Surgical resection usually curative.
- Neuronal fibrillation type 1 patients at increased risk, but do better overall.
- Most common site is the optic apparatus, followed by the brainstem.

Optic Gliomas

- 5% of all pediatric intracranial tumors
- Present in 30% of patients with NF1.
- Most commonly presents prior to the age of 8.
- Peak age of development appears to be age 2-3.
- Present with decrease in visual acuity or visual field loss.
- Can cause sequelae: including vision loss, neurological symptoms, proptosis.
- Screening by ophthalmologist yearly is critical.
- Visual outcome is variable. May improve even years after therapy.

Optic Gliomas and NF1

- Screening Recommendations:
  - Yearly ophthalmology examination until age 8, then every 2 years.
  - Limited evidence in children less than 1 year of age.
  - Changes in visual acuity or visual fields need further evaluation.
  - Optic glioma task force does not recommend screening MRIs.
  - Overall benign nature – majority halt growth spontaneously.
  - Only clear indication for therapy is vision changes.

Low-Grade Gliomas: The Influence of Neurofibromatosis-1

- 9 of 18 NF pts with progressive OG treated with radiotherapy had 12 Felt to have unacceptable long term consequences.
- 25% of these patients will require therapy.
- When to treat:
  - First line treatment: Chemotherapy.
  - Second line – vinblastine, avastin/irinotecan.
  - Carboplatin and vincristine.
- Loss of vision.
- Radiographic progression, endocrine changes, patient age.
- Often watchful waiting.
- First line treatment: Chemotherapy.
- Carbotaxol and vincristine.
- Second line – vinblastine, avastin/irinotecan.
- Radiation Therapy:
  - Felt to have unacceptable long term consequences.
- 9 of 18 NF pts with progressive OG treated with radiotherapy had 12 secondary malignancies. (Sharif et al., JCO 2006).
- Also at risk for significant cerebral occlusive vasculopathy (Grill et al., Ann Neurol 1999).

Stigmata of NF1

- Also called UBO or myelin vacuolization.
- Areas of T2 hyper intensity which are common in patients with NF1.
- Well circumscribed, non-enhancing.
- Found in over 60% of individuals with NF1.
- Not tumors, no known clinical significance.
- Often come and go – tend to disappear by adulthood.
- Are not a diagnostic feature of NF1.

Current Therapy for OPG

- When to treat:
  - No clear guidelines.
  - Loss of vision.
  - Radiographic progression, endocrine changes, patient age.
  - Often watchful waiting.
- First line treatment: Chemotherapy.
  - Carboplatin and vincristine.
  - Second line – vinblastine, avastin/irinotecan.
  - Radiation Therapy:
    - Felt to have unacceptable long term consequences.
    - 9 of 18 NF pts with progressive OG treated with radiotherapy had 12 secondary malignancies. (Sharif et al., JCO 2006).
    - Also at risk for significant cerebral occlusive vasculopathy (Grill et al., Ann Neurol 1999).
**NF1 Associated with Increased Risk of Malignancy**

- At higher risk of MPNST and astrocytomas.
- Rarer, but still at higher risk than the general population:
  - High grade gliomas
  - Pheochromocytoma (1-4%)
  - Juvenile Myelomonocytic Leukemia
- <1% of NF1 patients
- 200X the risk of non-NF1 patients
- Risk greatest in <4 year olds.
- Breast Cancer
  - Increased risk, particularly in women under 50.

**Lovastatin in NF1**

- Commonly utilized for cholesterol control.
- Well tolerated.
- Inhibits ras activation.
- Currently in phase II study for patients 8-16 years of age, open at 9 sites including Children Medical Ctr/UTSW.
- Looking at the effect of Lovastatin on attention and spatial learning primarily.

**Learning Disabilities**

- Neurodevelopmental problems found in over 50% of NF patients
  - Only a very small proportion have severe mental retardation (8%)
- Learning Disabilities overall 5 times more common in NF patients than the general population.
  - Speech abnormalities (esp. articulation issues).
  - Attention deficient disorders.
  - Impaired performance in at least 1 area of academic achievement.
  - Visual-spatial-perceptual problems.
  - Motor disorders.

**Other Complications**

- Endocrine:
  - Short stature – tend to be below average in height – 31% of patients (and above average in head circumference)
  - Increased risk of growth hormone deficiency - rare
  - Precocious puberty (associated with tumors of optic chiasm)
- Renal:
  - Essential Hypertension – 4% of patients.
  - Renal Artery Stenosis (proliferation of spindle cells)
- Neurological:
  - Seizure disorder – 7% of patients
  - Must evaluate for an intracranial cause.
  - Stroke, patients are at higher risk for moyamoya.
  - Motor disorders.
  - Visual-spatial-perceptual problems.
  - Speech abnormalities (esp. articulation issues).
  - Impaired performance in at least 1 area of academic achievement.
  - Only a very small proportion have severe mental retardation.

**Associated Disorders**

- Legius Syndrome (SPRED 1 mutations)
  - Autosomal dominant, resembles NF1 with café au lait macules, freckling, macrocephaly and some learning disabilities.
  - No malignancy risk.
  - Genetic testing is available.
- Segmental NF
  - Café au lait macules or neurofibromas in a single, unilateral segment of the body.
  - No evidence of systemic involvement.
  - Less risk of passing on to offspring.

**Current Treatment Recommendations**

- Yearly examinations:
  - Evaluation for new or progressive lesions.
  - Reassurance that café au lait spots may increase in number and size, but have no functional significance besides cosmetic.
  - Reinforce the benefits of sunscreen.
  - Yearly blood pressure examinations.
  - Evaluation of skeletal changes.
  - Evaluation of signs of precocious puberty.
  - Evaluation of neurodevelopmental progress.
  - Early intervention when delay is detected.
  - Hearing screen as warranted – NF1 patients are not at increased risk of hearing loss.
Current Treatment Recommendations

- Ophthalmology examinations:
  - Evaluation yearly by ophthalmologist until age 8, then every 2 years.
  - Critical for patients with known optic gliomas.
  - Often are indolent – treatment is indicated in light of progression or visual changes.
  - In patients without known gliomas – changes in visual acuity, color vision or visual field defects need CNS imaging.

What about annual or screening MRIs?

- The NF Optic Glioma Task force and NIH Consensus Development Conference do not recommend routine screening MRI or CT examinations of asymptomatic NF1 patients.
- Stigmata of NF1 is not specific and is not used for diagnosis.
- Most optic gliomas or other CNS lesions have a very indolent course and do not require therapy.
- Benefits do not out weight risk of sedations, expense.
- There are times where "screening" MRIs maybe warranted.
- Inability to get a good visual exam in young children.
- MRIs should absolutely be obtained in symptomatic children or children with a new neurological finding (including decrease in visual acuity).

Conclusions

- NF1 is a common genetic predisposition to cancer syndrome.
- Screening and identification is important.
- As the understanding of the biology improves, the number of targeted clinical trials increase.
- Children's Tumor Foundation (CTF) designated affiliate clinics are increasing.

Current Neuropsychological Recommendations

- For evidence of early neuro-developmental delays – early intervention is necessary and beneficial.
- Formal evaluation if difficulties become evident at school age.
- Often done in school system.
- Necessary for appropriate placement and school services.
- Evaluation every 2 years as warranted.

Role of genetic testing

- Is technically difficult as the gene is very large.
- Often not warranted as 95% of patients can be diagnosed clinically by age 11.
- May consider in patients with possible Legius (SPRED1) mutation.
- Can currently identify mutations 95% of the time.
- Use an RNA based approach.
- Testing can also be done on biopsies and can be done prenatally.
- Average cost of $1200.

For more information:

- About NF:
  - Children’s Medical Center Dallas NF website
  - Texas NF Foundation
    - www.texasnf.org
  - Children’s Tumor Foundation
    - www.ctf.org
- About clinical trials:
  - www.clinicaltrials.gov
Acknowledgements

NF Team in Dallas:
- Daniel Bowers, MD
- Jonathan Wickiser, MD
- Alexis Kennedy, APNP
- Melissa Miller, RN
- Rachel Haarde, RN
- Beena Mathews, RN

Funding Sources:
- Dedman Family Clinical Scholars
- Wipe Out Kids Cancer
- Texas Neurofibromatosis Foundation
- Children’s Tumor Foundation