The Child with a Bleeding Disorder

Amanda Blair, MD
Division of Hematology/ Oncology
Department of Pediatrics

Objectives

• Understand the basics of hemostasis
 — Platelets
 — Clotting Factors
 — Blood Vessel
• Clinical features of a bleeding disorder
• Laboratory evaluation
• Common bleeding disorders
 — von Willebrand Disease
 — Hemophilia

Hemostasis

• Primary Hemostasis
 — Involves platelets, vWF, and vessel wall
 — Goal is platelet plug formation at site of injury
 — Platelet plug stops bleeding, but is unstable

• Secondary Hemostasis
 — Involves the clotting factors
 — Goal is stabilization of platelet plug
 — Leads to fibrin clot formation

The Platelet “Plug”

Coagulation Cascade

New View: Interacting Systems

Adapted from Hoffman R, Monroe DM, III, Roberts HR. Blood Coag Fibrinol 1998;9:561-564; Used by Permission
Evaluation of the bleeding child

- **Medical history**
 - Bleeding history
 - Constitutional history
 - Family history

- **Physical examination**

- **Laboratory examination**

Bleeding History

- **Varies with patient age and gender**

- **Type of bleeding**
 - Platelet / blood vessel disorders: mucosal bleeding, petechiae
 - Clotting factor deficiency: soft tissue, muscle and joint bleeds
 - Bleeding with other invasive, dental or surgical procedures

Features of Abnormal Bleeding

- **Epistaxis**
 - Unrelieved by 15 minutes of pressure
 - Requiring ED visit

- **Menorrhagia**
 - Frequent pad changes (< 2 hour frequency)
 - Menses lasting > 7 days
 - >1 menstrual period in a month

Features of Abnormal Bleeding

- **Post-surgical / dental**
 - Uncontrolled bleeding in the field
 - Bleeding lasting beyond the day of dental work
 - Requiring a blood transfusion

- **Bruising**
 - Bruises other than on distal extremities
 - Larger than a quarter
 - Associated with hematoma
 - Out of proportion to mechanism of injury

Other Pertinent History

- **Family history**
 - Transfusions for minor surgery or menses
 - Post-partum hemorrhage
 - Chronic iron deficiency anemia

- **Medications**
 - ASA, ibuprofen, herbal medications

Most Important

When a child has had previous surgery or dental extractions without bleeding complications, it is unlikely there is an underlying congenital bleeding disorder.
Laboratory examination

- First line testing
 - CBC
 - Peripheral smear
 - Prothrombin time (PT)
 - Partial thromboplastin time (PTT)
 - Fibrinogen
 - Thrombin time
 - von Willebrand panel
 - Factor 8 activity, vWF antigen, vWF activity
 - PFA-100

Laboratory Examination

- Subsequent testing - repeat all abnormal tests
 - Factor XIII test
 - PTT abnormal
 - PTT mixing study
 - Factor VIII, IX, XI, XII levels
 - Lupus anticoagulant, Antiphospholipid testing
 - PT abnormal
 - PT mixing study
 - Factor 7
 - Protein C and S activity
 - vWF panel abnormal
 - Repeat testing
 - vWF multimers

Normal PT, PTT and platelet count

<table>
<thead>
<tr>
<th>PT</th>
<th>PTT</th>
<th>PR</th>
<th>DDx</th>
<th>Follow-up labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>vWF disease</td>
<td>PFA-100, von Willebrand panel, including multimers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Platelet function disorder</td>
<td>Platelet aggregation studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Factor XIII deficiency</td>
<td>Urea clot lysis test</td>
</tr>
</tbody>
</table>

Isolated prolongation of PTT

<table>
<thead>
<tr>
<th>PT</th>
<th>PTT</th>
<th>PR</th>
<th>DDx</th>
<th>Follow-up labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>↑</td>
<td>N</td>
<td>PT inhibitor</td>
<td>PTT mixing study, lupus anticoagulant, cardiolipin Ab’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>von Willebrand disease</td>
<td>von Willebrand panel including multimers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hemophilia A or B</td>
<td>Factor VIII and IX activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Factor XI Deficiency</td>
<td>Factor XI activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heparin contamination</td>
<td>Thrombin time</td>
</tr>
</tbody>
</table>

Isolated prolongation of PT

<table>
<thead>
<tr>
<th>PT</th>
<th>PTT</th>
<th>PR</th>
<th>DDx</th>
<th>Follow-up labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>N</td>
<td>N</td>
<td>PT inhibitor</td>
<td>PT mixing study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vitamin K deficiency</td>
<td>Factors II, VII, IX, X, protein C and protein S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Warfarin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Factor VII deficiency</td>
<td>Factor VII activity</td>
</tr>
</tbody>
</table>

Prolongation of PT and PTT

<table>
<thead>
<tr>
<th>PT</th>
<th>PTT</th>
<th>PR</th>
<th>DDx</th>
<th>Follow-up labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>N</td>
<td>Circulating inhibitor</td>
<td>Mixing studies, lupus anticoagulant, cardiolipin Ab’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liver dysfunction</td>
<td>Liver enzymes, thrombin time, reptilase time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vitamin K deficiency</td>
<td>Factors II, VII, IX, X, protein C and protein S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Factor II, V, and X deficiency</td>
<td>Factor activity assay</td>
</tr>
</tbody>
</table>
Prolonged PT/PTT and decreased platelets

<table>
<thead>
<tr>
<th>PT</th>
<th>PTT</th>
<th>PR</th>
<th>DDx</th>
<th>Follow-up labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>DIC</td>
<td>DIC panel including d-dimers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liver dysfunction</td>
<td>Liver enzymes, thrombin time, reptilase time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kasabach-Merritt syndrome</td>
<td>Physical exam, imaging to look for hemangiomas</td>
</tr>
</tbody>
</table>

Common inherited bleeding disorders
- Hemophilia A
- Hemophilia B
- von Willebrand disease

How common are bleeding disorders?
- von Willebrand disease
 - 1 in every 100 births = approximately 280,000
- Hemophilia
 - 20,000 males in the US
 - 80% hemophilia A
 - 20% hemophilia B
 - All racial and socioeconomic groups equally affected
 - Approximately 1 out of 7,500 live male births (CDC)
 - About 30% cases result from spontaneous mutation

Types of Hemophilia
- Hemophilia A
 - Classical type = Factor VIII deficiency
 - X-linked inheritance; 1:5000-10,000
- Hemophilia B
 - Christmas disease = Factor IX deficiency
 - X-linked inheritance; 1:30,000
- Hemophilia C
 - Factor XI deficiency
 - Autosomal inheritance, Ashkenazi Jews

Defect in Hemophilia
- Primary hemostasis is normal
 - Immature platelet plug is formed and bleeding stops
- Clotting protein deficiency
 - formation of mature fibrin clot is disrupted
- Platelet plug breaks
 - bleeding resumes
- Process repeats again
 - Repeated cycles of bleeding and stopping

Classification
- Severity classified by patient’s baseline level of factor
 - Levels often expressed as percentage of activity
- Mild hemophilia
 - 5-25% factor activity
- Moderate hemophilia
 - 1-5% factor activity
- Severe hemophilia
 - <1% factor activity
 - Experience the most morbidity and mortality
Evaluation

- Patient History
 - Neonatal
 - Prolonged bleeding with circumcision (30%)
 - Intracranial hemorrhage (1-2%)
 - Infant to Toddler
 - Easy bruising
 - Oral bleeding (especially torn frenulum)
 - Hemarthroses—ankles and knees once ambulatory
 - Intramuscular hemorrhages
 - Family History
 - Male relatives with histories of bleeding
 - Female carriers can also have bleeding
 - Skewed Lyonization
 - Turner's syndrome
 - 1/3 of new cases will have a negative family history

Complications of Hemophilia

- Joint bleeding
 - Knees>elbows>ankles>shoulder
 - Leads to chronic synovitis
- Muscle bleed
 - Leads to fibrosis and atrophy
 - Can lead to compartment syndrome
- Pseudotumors
- Subdural hemorrhage
- Inhibitors
 - HIV/ Hepatitis C — 90% if Rx started before 1994

Hemarthrosis

Treatment

- Replacement of missing clotting factor
- Most important—give factor before any imaging or testing
- Early administration decreases the total number of factor infusions required to treat a bleed
- When in doubt—GIVE FACTOR!

Factor Replacement

- Multiple factor preparations available
 - Plasma-derived and recombinant
 - Factor VIII—half life 8-12 hours
 - Humate-P—also has Von Willebrand's Factor
 - Factor IX—half life 18-24 hours
- Infused in peripheral vein
- Goal is to increase factor levels to stop bleeding
 - Each unit/kg of Factor VIII increases levels by 2%
 - Each unit/kg of Factor IX increases levels by 1%
- Expensive—approximately $1 per unit

Inhibitors

- 25% of severe hemophiliacs
- When to suspect an inhibitor?
 - Factor isn’t working
- Most common in the first 15 factor exposures
- Increased risk if +FHx of inhibitor
- Expressed in Bethesda Units (B.U.)
 - <10 BU low responder
 - >10 BU high responder
Pediatrics Grand Rounds
22 July 2011

Approaches to inhibitors

- Overcome the inhibitor with high doses of Factor
 - Only effective in low titer patients
 - Double doses or continuous infusions
- Use agents that can bypass inhibitor
 - FEIBA
 - Recombinant Factor VIIa (Novo7)
- Immune tolerance to decrease titers
 - Expose patient to Factor frequently to induce tolerance by immune system and decrease inhibitor titer
- Immune modulation to decrease titers
 - Rituximab

von Willebrand Disease

- Most common inherited bleeding disorder
 - Seen in 1% of population
 - <10% have bleeding problems
- Autosomal dominant
 - Men and women affected equally
 - Tends to cause greater morbidity in women of childbearing age
- Prevalence
 - referral based: 23-113 cases per million
 - population based: 8,200-16,000 per million

von Willebrand Factor

- VWF synthesized in megakaryocytes and endothelial cells
 - Stored in Weibel-Palade bodies in endothelial cells and alpha granules in platelets

Platelet Adhesion

- PLT
- VWF
- Subendothelium

Without VWF

- Platelets are not targeted to areas of endothelial damage well
- Leads to insufficient formation of platelet plug and fibrin clot
- Secondary deficiency of factor VIII
 - Result of accelerated clearance
 - Half life of FVIII 2hrs vs 12-20hrs for the complex FVIII-vWF

von Willebrand Disease

- Type 1 (60-80%)—Autosomal dominant
 - Quantitative defect
 - Mild-moderate bleeding symptoms
 - Labs
 - Decreased VWF antigen—10-45% of normal
 - Decreased Ristocetin cofactor activity
 - Low-normal to mildly decreased Factor VIII level
 - Normal VWF multimers
 - Normal platelet count, PT, PTT
- Type 3—Autosomal recessive
 - Most severe form
 - Resembles severe Hemophilia A
 - No detectable VWF antigen and very low Factor VIII
 - May have severe mucosal bleeding
 - Can also have hemarthroses
 - Markedly decreased Ristocetin cofactor activity
 - Prolonged PTT, Normal platelet count
von Willebrand Disease

- Type 2 (20-30%)—Autosomal dominant
 - Normal levels of VWF
 - Multimers are structurally abnormal
 - Mild-moderate bleeding
 - Type 2A (10-15%)
 - Small multimer units in circulation
 - Type 2B (5%)
 - Large VWF multimers with "gain of function" defect
 - Spontaneous binding to platelets and rapid clearance can lead to thrombocytopenia
 - Multimers rapidly cleared as they bind platelets

- Type 3 (0-15%)
 - Low levels of VWF
 - Severe bleeding

Treatment: Desmopressin (Stimate®)

- DDAVP trial
 - Drug administered in clinic prior to using for bleeding symptoms
 - VWF antigen and activity obtained before administration and 1 hour after
 - Once adequate response is documented, patient may use medication
 - Nasal Spray (Stimate®)<50kg 1 nostril >50kg both nostrils
 - DDAVP IV=0.3 mcg/kg SC=0.4 mcg/kg

Treatment by Variant

<table>
<thead>
<tr>
<th>Variant</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Yes: best if mild or moderate</td>
</tr>
<tr>
<td>Type 3</td>
<td>No: no response</td>
</tr>
<tr>
<td>Type 2A</td>
<td>±: poor response</td>
</tr>
<tr>
<td>Type 2B</td>
<td>No: decreases plts</td>
</tr>
<tr>
<td>Type 2M</td>
<td>±: poor</td>
</tr>
<tr>
<td>Type 2N</td>
<td>±: poor</td>
</tr>
<tr>
<td>Platelet type VWD</td>
<td>No: decreases plts</td>
</tr>
</tbody>
</table>

Treatment: Replacement Therapy

- Indicated in patients with severe disease
 - Type 3
 - Types 2A or 2B
- In type 1 patients who don’t respond to DDAVP or before serious surgery
- For prolonged treatment
 - Repeat doses q12-24 hrs.

- Factor VIII product rich in VWF (Humate P®): IV preparation that contains von Willebrand factor
 - Labeled with ristocetin cofactor units
 - 20-30 units/kg ristocetin cofactor raises blood levels to 50-100%
 - Cryoprecipitate
 - Only in extreme circumstances
 - Higher risk of viral transmission
Summary

• Consider all components of hemostasis when faced with a bleeding child
• Take a careful personal bleeding history
• Take a careful family history
• Consider bleeding disorder if amount of bleeding is unusual or prolonged
• When in doubt - give factor
• Consult Hemophilia Treatment Center or hematologist if any questions

Questions?

Thank you