Management of Septic Shock
Review of the Evidence and Implementation of Pediatric Guidelines at Christus Santa Rosa

Manish Desai, M.D. PL-5
2nd year Pediatric Critical Care Fellow

Objectives
• Review of current evidence and practice recommendations in septic shock
• Implement a set of pediatric guidelines to improve the quality of care in our patients with septic shock
• Establish quality indicators for monitoring adherence to the guidelines

Definitions - Progression of sepsis
• Sepsis
 – Systemic inflammatory response to an infection
• Severe sepsis
 – Sepsis and associated inflammatory response with organ dysfunction, hypotension, or hypoperfusion
• Septic shock
 – Sepsis-induced hypotension and inadequate organ perfusion despite adequate fluid resuscitation

Epidemiology of severe sepsis
• Incidence of 3 cases per 1000 people annually
• Overall hospital mortality rate 28.6%
 – Pediatric 10%
 – Adults 38.4% (higher in many studies)
• Average cost of $2200 per case and an annual cost 16.7 billion dollars nationally

Major goals of therapy
• Resuscitation to correct hypoxia, hypotension, and impaired tissue oxygenation
• Identify source of infection and treat to include antimicrobials and/or surgery
• Maintain organ system function and halt the development of multiorgan dysfunction

Early goal-directed therapy
• 263 adult patients with severe sepsis or septic shock
• Goal-directed therapy or standard therapy upon presentation and for initial 6 hours
• Resuscitation goals
 – Central venous pressure (CVP) ≥ 8
 – Mean arterial pressure (MAP) ≥ 65
 – Urine output ≥ 0.5 cc/kg/hr
 – Central venous oxygen saturation (ScvO₂) ≥ 70%

Early goal-directed therapy

- Interventions used to achieve goals
 - Aggressive fluid resuscitation to reach CVP ≥ 8
 - Vasopressors to reach MAP ≥ 65
 - Transfusion of PRBCs until Hct ≥ 30 followed by use of inotropic agents to reach ScvO2 ≥ 70%
- Early goal-directed therapy improved mortality (30.5% versus 46.5%, p=0.009)

Early reversal of shock

- Retrospective review of 91 children presenting to community physicians with septic shock
- Reversal of shock by community physicians within first 75 minutes improved survival by >9-fold
- Each hour of persistent shock beyond this point was associated with a >2-fold increased mortality
- Adherence to ACCM-PALS resuscitation guidelines led to improved survival: 8% vs 38% mortality

Han YY, Carcillo JA, et al, Pediatrics 2003

Surviving Sepsis Campaign

- Evidence-based guidelines
- Areas of management addressed include:
 - Aggressive fluid resuscitation
 - Antibiotic therapy and source control
 - Vasopressors and inotropes
 - Stress-dose and low-dose corticosteroids
 - Glycemic control
 - Mechanical ventilation
 - Pediatric considerations

Fluid resuscitation

- Surviving Sepsis Guidelines
 - Fluid resuscitation to CVP ≥ 8
 - Give fluid as long as hemodynamic improvement is seen
 - Decrease rate of fluid administration when increases in filling pressures are not associated with improved hemodynamics

Antibiotic Therapy and Source Control

- Surviving Sepsis Guidelines
 - Give Broad-spectrum antibiotic therapy **within the first hour**
 - Obtain cultures before starting antibiotics, but do not delay antibiotics for cultures
 - Start at least one antibiotic for all likely pathogens which penetrate to all likely sources

Antibiotic Therapy and Source Control

- Reassess antibiotics daily
- Combination therapy for pseudomonas
- Combination therapy for neutropenia
- Recommend duration of therapy be 7 to 10 days, longer for select cases
- Remember: blood cultures may be negative in up to 50% bacterial or fungal infections
Antibiotic Therapy and Source Control

- Identify sources requiring control as early as possible, ideally **within 6 hours**
- Identify abscesses that need drainage and devices (including lines) that may be infected
- When source control is required, recommend least invasive effective intervention be done
- If intravascular device is a possible source of septic shock, recommend prompt removal

Antibiotics: Every hour counts

- Retrospective study of 2,154 adults
- Giving antibiotics within the first hour of hypotension led to a 79.9% survival rate
- Each hour delay over the next 6 hours was associated with a 7.6% decrease in survival
- Only 50% of septic shock patients received antibiotics within the first 6 hours

 Kumar, et al, Crit Care Med 2006

Antibiotics: Err on the side of caution

- Retrospective study of 5,715 adults
- Examined appropriateness of antibiotic therapy based on infection site and relevant pathogens
- Appropriate antibiotics started in 80% of cases
- Survival rates after appropriate vs inappropriate antibiotics were 52% vs 10.3% (p<0.0001)

 Kumar, et al, Chest 2009

Antibiotics and acute kidney injury

- Retrospective study of 4,532 adults
- 64.4% developed some degree of AKI
- Patients who developed AKI had longer delays in antibiotics (4.3 hrs vs 6 hrs, p<0.0001)
- Increased odds of AKI per hour of delay (OR 1.14)
- AKI increased mortality (OR 1.73, p<0.0001)

Vasopressors

- Surviving Sepsis Guidelines
 - Recommend that MAP be kept ≥ 65
 - Recommend either norepinephrine or dopamine as first choice
 - Suggest epinephrine, phenylephrine, and vasopressin should **not** be administered as first line

Vasopressors

- Surviving Sepsis Guidelines
 - Suggest epinephrine be the first chosen alternative to dopamine or norepinephrine
 - Vasopressin 0.03 units/min may be added later
 - Recommend that all patients requiring vasopressors have arterial line as soon as practical if resources are available
Norepinephrine vs. Dopamine

- Trial of 1679 adults with shock (all types) who received norepinephrine or dopamine first-line
- No significant difference in overall mortality
- More arrhythmias with dopamine (24 vs 12%, p<0.001)
- Dopamine showed higher mortality only in cardiogenic shock patients (p=0.03)

De Backer, et al, NEJM 2010

Vasopressors

- Epinephrine considered second-line due to potential for ischemia and effects on gastric blood flow
- Epinephrine vs Norepinephrine
 - Randomized trial of 280 adults with shock
 - No difference in mortality
 - 13% of patients epinephrine group patients withdrawn for lactic acidosis or tachycardia

Inotropic therapy

- Surviving Sepsis Guidelines
 - Recommend dobutamine be used as first-line therapy in the presence of myocardial dysfunction evidenced by elevated filling pressures and low cardiac output
 - Recommend against strategy of increasing cardiac index to some predetermined elevated value in an effort to improve oxygen delivery

Corticosteroids

- Multiple large RCTs in the 1980s showed that high doses of steroids were not beneficial and caused an increase in the rate of secondary infections
- More recently, lower doses have been used for “relative” insufficient stress responses
- Large randomized placebo-controlled adult study
- 7 days of low-dose steroids improved survival in nonresponders to corticotropic stimulation
 - 53% vs 63% mortality (p=0.02)

Annane, et al, NEJM 2002
Corticosteroids

- **Surviving Sepsis Campaign**
 - Suggest IV hydrocortisone only be used in septic shock that is poorly responsive to fluid resuscitation and vasopressor therapy
 - Steroid therapy should not be guided by corticotropin stimulation test results
 - Cortisol levels or response to stimulation test do not predict who will respond clinically to steroids with hemodynamic improvement

Recombinant activated protein C

- Mixed results in adults, but showed benefit in severe sepsis and septic shock (APACHE II >25)
- **RESOLVE trial**
 - Large clinical trial in pediatric patients with sepsis
 - Stopped early due to lack of benefit
 - Increased risk of intracranial hemorrhage, especially in infants ≤60 days

Etomidate and septic shock

- Substudy of CORTICUS: corticotropin response and mortality in 96 adults receiving etomidate
- Higher portion of non-responders in those receiving etomidate (61 vs 44.6%, p=0.004)
- Hydrocortisone administration did not change mortality in these non-responders (45 vs 40%)
- Etomidate was associated with a higher mortality in patients with septic shock (p=0.02)

- Cuthbertson et al, Intensive Care Med 2009

Glycemic control

- **Surviving Sepsis Guidelines**
 - Treat hyperglycemia with insulin after stabilization
 - Suggest protocol with target glucose < 150
 - Large randomized adult trial showed a reduction in ICU mortality with intensive insulin targeting glucose of 80-110 (Leuven protocol, NEJM 2001)
 - More recent trials for aggressive control showed no benefit and had higher rates of hypoglycemia

Glycemic control

- **NICE-SUGAR study, NEJM 2009**
 - Trial of 6100 adult ICU patients randomized to intensive therapy (glucose 80-110) or conventional therapy (glucose <180)
 - Mortality of 27.5% in the intensive therapy group vs 24.9% in the conventional therapy group
 - Severe hypoglycemia of 6.8% in the intensive group vs 0.5% in the conventional group

- **COITSS study, JAMA 2010**
 - Randomized trial of intensive vs conventional insulin therapy in 509 adults with septic shock who received hydrocortisone
 - Compared with conventional therapy, intensive insulin therapy did not improve mortality
 - Patients treated with intensive insulin had significantly more episodes of hypoglycemia
Mechanical ventilation

- **Surviving Sepsis Guidelines**
 - Tidal volumes of 6-8 ml/kg and peak pressures ≤ 30 cm H₂O
 - Elevated head of bed to 30-45° to limit risk of aspiration and ventilator-associated pneumonia
 - Recommend ventilator weaning protocol and spontaneous breathing trials
 - Recommend sedation protocols

Pediatric considerations

- **Surviving Sepsis Guidelines**
 - Mortality much lower (10%) than in adults
 - Boluses of 20ml/kg titrated to hemodynamics
 - Use dopamine as initial pressor
 - Pediatric patients may have variable CI and SVR
 - Suggest tailoring pressor/inotropes to the patient
 - Use epinephrine or norepinephrine if fails dopamine

Hemodynamic support of pediatric and neonatal septic shock

- **Practice parameters from the American College of Critical Care Medicine (Crit Care Med 2009)**
 - Address the following:
 - Resuscitation goals for children
 - Fluid resuscitation (proportionally more than adults)
 - Inotropic, vasopressor, and vasodilator therapies
 - Hydrocortisone for adrenal insufficiency
 - ECMO for refractory shock

Pediatric practice parameters

- **Use cardiac output and perfusion pressure**
- **Urine output** estimates adequacy of perfusion pressure in absence of invasive monitoring
- **Multiple methods to measure cardiac output**, but not routinely available and can be unreliable
- **SvO₂ can estimate whether cardiac output meets tissue metabolic demands**

Pediatric practice parameters

- **Recommend that diagnosis of septic shock rely on clinical examination, but lactate may be useful**
- **Hemodynamic parameters and mortality**
 - Tachycardia/bradycardia (3%)
 - Hypotension with cap refill <3 sec (5%)
 - Normotension with cap refill >3 sec (7%)
 - Hypotension with cap refill >3 sec (33%)

Hemodynamic support of pediatric and neonatal septic shock

- **Practice parameters from the American College of Critical Care Medicine (Crit Care Med 2009)**
 - Address the following:
 - Resuscitation goals for children
 - Fluid resuscitation (proportionally more than adults)
 - Inotropic, vasopressor, and vasodilator therapies
 - Hydrocortisone for adrenal insufficiency
 - ECMO for refractory shock

Pediatric practice parameters

- **Use cardiac output and perfusion pressure**
- **Urine output** estimates adequacy of perfusion pressure in absence of invasive monitoring
- **Multiple methods to measure cardiac output**, but not routinely available and can be unreliable
- **SvO₂ can estimate whether cardiac output meets tissue metabolic demands**

Validating SvO₂ use in pediatrics

- 102 children with septic shock treated by ACCM/PALS guidelines
 - Half randomized to SvO₂ monitoring for first 6 hrs
 - Volume, PRBCs, +/- inotropes to reach SvO₂ ≥ 70
 - Lower 28-day mortality: 11.8 vs 39.2%, p=0.002
 - Lower incidence of new organ dysfunction as well

Pediatric practice parameters

- No advantage to colloids over crystalloids
- Blood transfusions
 - Goal hemoglobin >10 in septic shock
- Vasopressors
 - Typically recommend use of dopamine first-line
 - Agree with using norepinephrine alone with low SVR and wide pulse pressure, DBP < ½ SBP

Pediatric practice parameters

- 2002 guidelines discouraged use of vasoactive agents until central access was in place
- Newer guidelines recommend use of peripheral inotropes (not vasopressors) until central access is attained
 - Low-dose dopamine or epinephrine
- Obtain arterial access when able, but this should not delay use of vasopressors

Bundled care for septic shock

- Prospective 2-year interventional study
- The second year added an early goal-directed therapy protocol to ED management
- 79 patients pre-intervention, 77 post-intervention
- Patients in the post-intervention year:
 - Received significantly greater fluid volumes
 - Had increased use of early vasopressors
 - Had reduction in mortality (18% vs 27%)

Bundled care for septic shock

- Septic shock bundle used over 2-year period
 - Initiate CVP/SvO2 monitoring within 2 hrs
 - Broad-spectrum antibiotics within 4 hrs
 - Complete early goal-directed therapy within 6 hrs
 - Give corticosteroids if indicated
 - Monitor lactate clearance
- 330 total patients; mortality 20.8% if bundle completed vs 39.5% if not completed (p<0.01)

Bundled care for septic shock

- Surviving Sepsis Campaign, Crit Care Med 2010
 - 6-hr resuscitation and 24-hr management bundles
 - Data collected from 2005-2008 for hospitals enrolled
 - Data from 165 sites and over 15,000 patients analyzed
 - Full bundle compliance increased from 10.9% initially to 31.3% by the end of two years
 - Overall mortality decreased from 37% to 30.8% over two years (p=0.001), and survival improved the longer a center was in the campaign

Bundled care for septic shock

- Meta-analysis of 8 trials of bundled care for septic shock
 - Sepsis bundles associated with a consistent increase in survival (odds ratio 1.91, p < 0.0001)
 - All studies reported decreases in time to antibiotics and increased appropriateness of antibiotics
 - All other elements were inconsistently reported

Barochia, et al, Crit Care Med 2010
Pediatric guidelines for initial management of septic shock

- Recognize decreased mental status and perfusion
- Maintain or establish airway and IV access per PALS
- Fluid challenges: 20cc/kg boluses up to and over 60cc/kg unless clinically worse due to fluids
- Obtain cultures and start broad-spectrum antibiotics within 1 hour (do not delay for cultures)
- Assess for and treat hypoxia, hypoglycemia, and hypocalcemia
- Notify PICU if requiring >40ml/kg in boluses
- Consider intubation for persistent shock and/or respiratory distress
- Fluid-refractory shock: Start dopamine and obtain central and arterial access as able
- Consider norepinephrine alone for warm shock if central access is in place

Pediatric guidelines for initial management of septic shock

- Dopamine-resistant shock: Add epinephrine for cold shock or norepinephrine for warm shock
- If at risk for adrenal insufficiency, consider baseline cortisol level and give hydrocortisone 100mg/m² loading dose
- Titrate pressors; give additional volume as needed
- Monitor CVP, arterial blood pressure, lactates, and SVO₂ as able

Quality Indicators

- Time to antibiotics
- Time to achieve CVP ≥ 8
- Time to achieve adequate age-adjusted BP
- Time to achieve SVO₂ ≥ 70

Questions???
References

References

