Pharmacological Treatment of Attention Deficit Hyperactivity Disorder and its comorbidities

Steven R. Pliszka, M.D.
Professor and Vice Chair
Chief, Division of Child and Adolescent Psychiatry
Department of Psychiatry
The University of Texas Health Science Center at San Antonio

History of stimulant treatment

- Benzedrine (a mixed salts amphetamine) first used in 1938
- Dextroamphetamine and methylphenidate (Ritalin) introduced in the 1960’s
- Hundreds of double blind, placebo controlled studies involving thousands of patients in last five decades
- The most extensively studied psychotropic medication

Methylphenidate (MPH)

<table>
<thead>
<tr>
<th>Medication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerta</td>
<td>Osmotic pump, small dose released in AM, the rest released gradually over the day- 10-12 hour action</td>
</tr>
<tr>
<td>Focalin</td>
<td>D-methylphenidate isomer only (+-methylphenidate is inactive, not absorbed into blood stream)- may have slightly longer action than d, l MPH</td>
</tr>
<tr>
<td>Focalin XR</td>
<td>Immediate and delayed release beads, gives 10-12 hour action in laboratory classroom</td>
</tr>
<tr>
<td>Ritalin</td>
<td>Immediate release d,l MPH, each dose last about 4 hours</td>
</tr>
<tr>
<td>Ritalin LA</td>
<td>Immediate and delayed release beads, gives 8 hour action</td>
</tr>
<tr>
<td>Daytrana</td>
<td>D,l MPH absorbed directly into bloodstream though skin, if patch worn 9 hours, gives 10-12 hour action</td>
</tr>
<tr>
<td>Metadate</td>
<td>D,l MPH, 30% released immediately, 70% release later in day, 8 hour action</td>
</tr>
</tbody>
</table>
Amphetamine (AMP)

<table>
<thead>
<tr>
<th>Medication</th>
<th>Starting Dose</th>
<th>Maximum Dose</th>
<th>Usual Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH</td>
<td>5 mg qd</td>
<td>2 mg/kg/day</td>
<td>bid (4h) bid (5h-6h)</td>
</tr>
<tr>
<td>Dex-MPH</td>
<td>2.5 mg</td>
<td>2 mg/kg/day</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>Dex-MPH XR</td>
<td>15 mg qd</td>
<td>2 mg/kg/day</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>Oros-MPH</td>
<td>2.5 mg-qd</td>
<td>1 mg/kg/day</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>MPH CD</td>
<td>5 mg</td>
<td>1 mg/kg/day</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>MPH LA</td>
<td>5 mg</td>
<td>1 mg/kg/day</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>Dex-MPH-XR</td>
<td>2 mg/kg/day</td>
<td>1 mg/kg/day</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>D-AMP, MAS</td>
<td>12.5 mg qd</td>
<td>1 mg/kg/day</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>LDX</td>
<td>2.5 mg-qd</td>
<td>1 mg/kg/day</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>MAS XR</td>
<td>5 mg</td>
<td>1 mg/kg/day</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>D-amphetamine</td>
<td>10 mg</td>
<td>20-30 mg qd</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>Dex Spansule</td>
<td>2.5 mg-qd</td>
<td>1 mg/kg/day</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>Lisdexamfetamine</td>
<td>5 mg</td>
<td>10 mg</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>MTS</td>
<td>10 mg-20 mg qd</td>
<td>bid (5h-6h)</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>MTX</td>
<td>10 mg-20 mg qd</td>
<td>bid (5h-6h)</td>
<td>bid (5h-6h)</td>
</tr>
<tr>
<td>MPH = methylphenidate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dex = dextroamphetamine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDX = lisdexamfetamine dimesylate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTS = methylphenidate transdermal system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS = mixed amphetamine salts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-AMP = dextroamphetamine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choosing stimulant

- On average MPH and AMP have equal efficacy and degree of adverse events
- Wide individual variation in how patients respond to stimulant class/formulations
- No clinical predictors of stimulant response exist
- Careful individual trials are needed

Side Effects with Methylphenidate and Amphetamine Therapy

Many side effects are characteristic of ADHD and improve with stimulant treatment.
Growth and Stimulants: Recent Studies (Cont.)

Estimated Reporting Rates (1992-2004): Pediatric Sudden Death (≤18 Years Old)

American Heart Association Guidelines

• Press release, article by Vetter et al. in Circulation, May 6, 2008
• While the article refers to stimulants in the title, it recommends EKG’s for all ADHD medications, including atomoxetine and alpha agonists, both at baseline and follow up
• No new data in article. Lengthy discussion in article of sudden death in athletes, yet AHA concludes that EKG screening of athletes is not feasible

• ~6000 children in atomoxetine trials
• QTc interval > 500 msec was exclusionary
• Only 7 subjects excluded
Winterstein et al., Pediatrics, 2007

- Florida Medicaid claims data 1994-2004
- 55,383 children placed on stimulants
- No cardiac deaths in 46,612 person-years
- 27 hospitalizations-
- 1091 children visited ER (8.7 per 100,000 person-years)
- ER visits associated with multiple med use, including concurrent use of bronchodilators
- "Incidence rates of cardiac events requiring hospitalization were small and similar to national background rates."

Psychiatric Side Effects of Stimulants?

<table>
<thead>
<tr>
<th>Drug</th>
<th>Type of trial</th>
<th>No. of</th>
<th>Duration of trials (range)</th>
<th>Category of exposure</th>
<th>N</th>
<th>Patient-years</th>
<th>Psychotic events</th>
<th>Suicidal events</th>
<th>Aggressive events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerta</td>
<td>DB</td>
<td>4</td>
<td>9-25 dys</td>
<td>Placebo</td>
<td>317</td>
<td>12.23</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ool</td>
<td>7</td>
<td><10 mos</td>
<td>Drug DB</td>
<td>424</td>
<td>12.23</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metadate</td>
<td>DB</td>
<td>4</td>
<td>7-21 dys</td>
<td>Placebo</td>
<td>394</td>
<td>18.44</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ool</td>
<td>2</td>
<td>NS</td>
<td></td>
<td>Drug Ool</td>
<td>525</td>
<td>18.44</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Strattera</td>
<td>DB</td>
<td>6</td>
<td>1-5 wks</td>
<td>Placebo</td>
<td>356</td>
<td>23.62</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ool</td>
<td>3</td>
<td><1 yr</td>
<td>Drug Ool</td>
<td>356</td>
<td>23.62</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adderall</td>
<td>DB</td>
<td>7</td>
<td>1-4 wks</td>
<td>Placebo</td>
<td>510</td>
<td>26.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ool</td>
<td>5</td>
<td><1 yr</td>
<td></td>
<td>Drug Ool</td>
<td>510</td>
<td>26.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Atomoxetine</td>
<td>DB</td>
<td>20</td>
<td><7 wks</td>
<td>Placebo</td>
<td>349</td>
<td>56.95</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ool</td>
<td>10</td>
<td><30 yrs</td>
<td>Drug Ool</td>
<td>349</td>
<td>56.95</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ritalin LA</td>
<td>DB</td>
<td>10</td>
<td>1-34 dys</td>
<td>Placebo</td>
<td>229</td>
<td>36.53</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ool</td>
<td>1</td>
<td>NS</td>
<td>Drug Ool</td>
<td>229</td>
<td>36.53</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DMPH</td>
<td>DB</td>
<td>5</td>
<td>4-8 dys</td>
<td>Placebo</td>
<td>500</td>
<td>13.55</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ool</td>
<td>5</td>
<td><1 yr</td>
<td>Drug Ool</td>
<td>500</td>
<td>13.55</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Atomoxetine Site of Action

1. NE concentration and duration increased
2. Forward transmission of impulse is enhanced
3. NE feedback inhibition to presynaptic neuron occurs, improving signal transmission efficiency

Atomoxetine

- Specific noradrenergic reuptake inhibitor
 - Affects dopamine in frontal lobes
 - Unscheduled, renewable
 - No addictive liability
 - >10 controlled trials demonstrating efficacy
 - Long-term studies: continued effectiveness

Neurotransmitter selective blocks NE transporter

NE Norepinephrine

Comparing stimulants and Atomoxetine

• Newcorn et al. (Am J Psychiatry, 2008; 165:721-730)
• Patients with ADHD (age 6-16 years) assigned randomly to:
 – Concerta (n = 220, 18-54 mg/day)
 – Strattera (n = 222, 1.2-1.8 mg/kg/day)
 – Placebo (n = 74)
• 6 week trial

Comparing stimulants and Atomoxetine

% Responders

Concerta
Strattera
Placebo

* Am J Psychiatry, 2008; 165:721-730)

Comparing stimulants and Atomoxetine

Atomoxetine

• Specific noradrenergic reuptake inhibitor (cont’d)

 – Rare hepatitis reported
 • One case confirmed/3.4 million exposures
 • One case suspected/3.4 million exposures
 – Possible slight increase in suicidal ideation reported in clinical trials
 • 0.37% atomoxetine vs 0.0% placebo
 • One suicide attempt/1,357 cases; no suicides

Dosing of Atomoxetine in ADHD

• Prescribing information (not a controlled substance)
 – Start = 0.5 mg/kg/day
 – Target 1.2 mg/kg/day with max of 1.4 mg/kg/day or 100 mg/day
• 8 yo boy
 – Start 18 mg for 4 days in AM after food
 – 25 mg for 4-7 days then increase to 40 mg
• If already on stimulant, typically stop stimulant, introduce atomoxetine then re-evaluate need for stimulant

MAOI = monoamine oxidase inhibitor.
Dosing of Atomoxetine in ADHD (cont’d)

- Available in 10 mg, 18 mg, 25 mg, 40 mg, 60 mg capsules
- Sprinkling not formally tested and may irritate GI tract
- Drug interactions (contraindicated with MAOIs)
 - Decrease dose if co-administering with strong 2D6 inhibitor (fluoxetine, paroxetine)
 - Co-administration with IV albuterol (600 mcg over 2 hours) is associated with mild increases in heart rate and blood pressure
 - Co-administration with methylphenidate appears well tolerated but has not been fully studied

Alpha Agonists in the treatment of ADHD

Clonidine and Stimulant Alone & Combined
Palumbo et al. JAACAP 47: 180

Extended Release Guanfacine: Change in ADHD RS

Biederman, J. et al. Pediatrics 2008;121:e73-e84

MAOI = monoamine oxidase inhibitor.

Alpha Agonist Summary

- **Clonidine**
 - Increasingly used in single dose in PM for insomnia secondary to stimulants (0.05 to 0.1 mg q HS)
 - Declining role for treatment of daytime ADHD due to efficacy issues as well as sedation

- **Guanfacine**
 - Both immediate release and XR (when available) used more ADHD itself
 - Non responders to stimulants and atomoxetine
 - Patients with stimulant-induced tics whose ADHD responds only to stimulants

Extended release Guanfacine

\% of subjects with improvement in CGI-I scores

Dosing of clonidine and guanfacine

<table>
<thead>
<tr>
<th>Week</th>
<th>Dosage (mg) of Alpha Agonist (Weight < 45 kg)</th>
<th>Dosage (mg) of Alpha Agonist (Weight > 45 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Clonidine</td>
<td>Guanfacine</td>
</tr>
<tr>
<td>1-2</td>
<td>0.05 q.h.s.</td>
<td>0.5 q.h.s.</td>
</tr>
<tr>
<td>2-4</td>
<td>0.05 b.i.d.</td>
<td>0.5 b.i.d.</td>
</tr>
<tr>
<td>3-6</td>
<td>0.05 t.i.d.</td>
<td>0.5 t.i.d.</td>
</tr>
</tbody>
</table>

Stages of Medication RX for ADHD

1. Trial of a single stimulant, try different formulations for duration action
2. Trial of stimulant in alternate class
 - MPH fail \longrightarrow AMP
 - AMP fail \longrightarrow MPH
3. Trial of atomoxetine or guanfacine XR (if approved)
4. No response to any the above: psychiatric consultation
When and how should PCP’s treat comorbidity in ADHD?

- Tics
- Impulsive/severe aggression
- Autism Spectrum Disorders
 - Deferred to separate module
- Depression and Anxiety
 - Deferred to separate module

Tics and ADHD

- Many children with tics and ADHD can tolerate stimulants without an increase in tics
 - Law and Schachar (1999): 12-month study, 91 children
 - MPH treatment did not produce significantly more tics than placebo in children with or without mild-to-moderate pre-existing tic disorder
 - Gadow et al. (1999): 24-month study, 34 children with ADHD and tic disorder or Tourette’s syndrome
 - Stimulant treatment was effective in controlling ADHD symptoms without adversely affecting tics
 - Lipkin et al. (1994), in a review of 122 children treated with stimulant medication found 9% developed transient tics and <1% developed chronic tics

Induction or Exacerbation of Tics

- Tics are usually transient; only very rarely do patients develop a chronic tic disorder
- When tics occur or increase
 - Decrease dose
 - Switch to another stimulant
 - Adjunct agent to treat tics
 - Try nonstimulant medication

Controlled Trial of MPH and Clonidine

[Graph showing the change in Y-GTSS over weeks for PLA, MPH, CLON, and MPH + CLON conditions]

Y-GTSS = Yale Global Tic Severity Scale; Tourette Syndrome’s Study Group (2002), Neurology 58(4):527-536
Aggression

• First line for children with ADHD and aggression
• Treatment of ADHD
 – Stimulants show striking efficacy in controlled trials of the treatment of aggression 1,2
 – Behavior therapy by SUPPORT counselor
 – If aggressive outbursts with prolonged (> 10 min) rage, attacks on others or destruction of property, in spite of treatment of ADHD and psychotherapy, adjunctive psychopharmacology may be needed

When should PCP’s treat aggression pharmacologically?

• SUPPORT therapist consults with psychiatrist, determines if bipolar/psychosis is ruled out
• If necessary, PCP consults directly with psychiatrist

How far should PCP’s go?

• Monotherapy with one or two second generation antipsychotics (SGA’s) [alone or in combination with stimulant], if no response after that, transfer to psychiatry
• Classic mood stabilizers (lithium, divalproex) will have limited use, no combinations with SGA

SGA Antipsychotics

• Current agents*
 – Risperidone (Risperidal)
 – Quetiapine (Seroquel)
 – Aripiprazole (Abilify)
 – Olanzapine (Zyprexa)
 – Ziprasidone (Geodon)

• Powerful
• Sometimes necessary
• Limit use because of ...
 – Sedation
 – Weight gain

*Listed in order of common usage/number of studies

Efficacy of Risperidone in Conduct Disorder: Change in Aggression Score

Snyder R et al. (2002), J Am Acad Child Adolesc Psychiatry 41(9):1026-1036
Combination of Stimulant and SGA

On Aggression scale, no difference between placebo and risperidone; placebo effect suggest effect of psychosocial intervention

Armenteros et al. (2007) JAACAP 46: 558-565

![Combination of Stimulant and SGA](image)

SGA’s and bipolar disorder in children

- **Risperidone**- FDA approved for treatment of bipolar in adolescents age 10-17 years, extensive studies in aggression
- **Aripiprazole**- FDA approved for treatment of bipolar in adolescents age 10-17 years, small studies in aggression
- **Quetiapine**- studies in children with bipolar and aggression, no FDA approval yet, but extensive clinical experience
- **Olanzapine**- studies in teens with bipolar, serious weight gain, viewed as drug of last resort
- **Ziprasidone**- one positive study in children with bipolar, EKG issues

Controversy over use of SGA’s in children

- Eli Lilly paid $1.4 billion to settle federal charges that it downplayed risks of olanzapine to physicians and encouraged off label use in children and the elderly
- Concerns that the diagnosis of bipolar disorder is made too frequently in children and adolescents
- Are we exposing children to long term risk of cardiovascular disease and/or diabetes?
- SGA’s should never be used for treatment of ODD alone, only severe aggression and mood lability

Antipsychotic Weight Gain: Meta-Analysis

Allison DB et al. (1999), Am J Psychiatry 156(11):1686-1696

<table>
<thead>
<tr>
<th>Drug</th>
<th>Weight Change (kg)</th>
<th>95% CI for weight change after 10 weeks on standard drug doses, estimated from a random effects model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Conventional antipsychotics</td>
<td>-2.1 (2.7)</td>
<td></td>
</tr>
<tr>
<td>Novel antipsychotics</td>
<td>-3.3 (0.9)</td>
<td></td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>Haloperidol</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>Chlorpromazine</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Risperidone</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Olanzapine</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>Clozapine</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Clozapine</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Conventional antipsychotics</td>
<td>1.5 (2.9)</td>
<td></td>
</tr>
</tbody>
</table>
SGA dosing: Risperidone

<table>
<thead>
<tr>
<th></th>
<th>Preadolescents</th>
<th>Adolescents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 1-2</td>
<td>.5 qhs</td>
<td>1 mg q hs</td>
</tr>
<tr>
<td>Weeks 3-4</td>
<td>.5 mg bid</td>
<td>1 mg bid/tid</td>
</tr>
<tr>
<td>Weeks 5-6</td>
<td>1 mg bid/tid</td>
<td>2 mg bid/tid</td>
</tr>
</tbody>
</table>

Specific side effects: Sedation, EPS, drooling, increased prolactin, weight

SGA dosing: Quetiapine

<table>
<thead>
<tr>
<th></th>
<th>Preadolescents</th>
<th>Adolescents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 1-2</td>
<td>25 mg Q D/25 mg bid</td>
<td>50 mg bid</td>
</tr>
<tr>
<td>Weeks 3-4</td>
<td>50 mg bid</td>
<td>200 mg bid</td>
</tr>
<tr>
<td>Weeks 5-6</td>
<td>100-200 mg bid</td>
<td>300 mg bid</td>
</tr>
</tbody>
</table>

Specific side effects: Sedation, increased weight, some street value for sedating effect

SGA dosing: Aripiprazole

<table>
<thead>
<tr>
<th></th>
<th>Preadolescents</th>
<th>Adolescents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 1-2</td>
<td>2.5-10 mg/day*</td>
<td>5-10 mg/day</td>
</tr>
<tr>
<td>Weeks 3-4</td>
<td>10-15 mg/day</td>
<td>15-20 mg day</td>
</tr>
<tr>
<td>Weeks 5-6</td>
<td>20 mg/day**</td>
<td>30 mg/day**</td>
</tr>
</tbody>
</table>

*Use 2.5-5 mg starting dose in children < 30 kg
**Caution, watch for EPS

Specific side effects: EPS, weight gain

SGA’s safety monitoring

- **Baseline measures**
 - Comprehensive metabolic panel
 - Lipid panel
 - Triglycerides
 - Total cholesterol
 - High density cholesterol (HDL)
 - Low density cholesterol (LDL)
 - Height, weight and BMI
- Repeat in 3 months, then every 6 months
Excessive weight gain

- First, assess risk/benefit ratio
- Is the SGA really provide benefit? The parent saying that he “seems” better is not sufficient. Look for:
 - Drop of 50% in Aggression questionnaire score
 - Now has 1-2 weeks completely free of physical aggression
- Consider switch to alternative SGA

Summary

- Algorithm for treatment of uncomplicated ADHD is well established
- Presence of ODD or CD does not change medication management
- ADHD with tics: trial of atomoxetine or guanfacine alone or stimulant combined with guanfacine
- Impulsive, explosive aggression: treat ADHD, engage behavior therapy, if this fails add SGA monotherapy to ADHD medication treatment (Do not combine alpha agonist with SGA)